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PREFACE 

The e f f o r t  reported here was supported by NASA-Lewis Research 

Laboratory on Contracts NAS-3-21930 and NAS-3-22445. 

advance of assembling the diamond cubes with the  chemically milled Amzirc 

ladders and the  waveguide ridges was achieved by Mr. 'Dan T. Andker. 
suggestions and capabi l i ty  grea t ly  promoted the  successful completion of t h e  
TunneLadder amplifier tubes. Contributors i n  computational, cold-test ,  

mechanical design and other  areas included G.-A. BiggS, T. J. Grant ,  

Y. Mizuhara, J. L. Putz and D. West. 
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1. SUMMARY 

This contract f i n a l  report reviews the  development of a low-cost, 
traveling-wave amplifier t o  be used i n  narrow-band space communication at  
millimeter-wave frequencies. The design was based on a NASA-recommended, 
narrow-band fundamental (nonspace harmonic) interact ion c i r cu i t  and used an  
appropriate ladder-based periodic structure.  The first analysis was based 
on the  forward-wave "Karp Structure" . 
extended i n  a NASA-sponsored study i n  which a c i r c u i t  derivative,  the  

Wnneladder, was suggested and examined experimentally i n  scaled cold-test 

versions . 

These r e su l t s  were ver i f ied and 

(2 )  

This follow-on f e a s i b i l i t y  program produced two  operative engineering 
models. The focusing design was a PM-based electron-optical system 

providing a 0.47 mm (18.5 m i l s )  diameter beam a t  10 kV and microperveance 

0.2. The PM a x i a l  f i e l d  was 3200 gauss or twice the  Brillouin value over a 

59.8 mm (2.355 inches) gap. 

The TunneLadder c i r c u i t  is a diamond supported periodic structure.  It 

i s  discussed extensively i n  the  August 1980 f i n a l  report fo r  Contract 

NAS-3-21930. 
approximates a flattened hexagon circumscribing an e l l i p s e  0.61 x 0.86 mm. 
The crucial  program e f f o r t ,  however, was the  fabrication of a f u l l - s c 4 e  

millimeter-wave c i r c u i t  using a copper and Amzirc body and Amzirc-foil 

l a d d e r  rungs, brazed t o  diamond-dice supports. 

The tunnel cross section adapted f o r  t he  29 GHz tube 

The full-scale,  ladder-like c i r c u i t  elements were successfully 

fabricated and the technology t o  active-braze the  f o i l  t o  diamond dice was 

made a reproducible operation. 

c i r c u i t  was accomplished and a braze technique developed for  brazing of t he  

t w o  halves with alignment of the individual rungs. 

The f i n a l  machining of the ladder half- 

The waveguide t r ans i t i on  was i n i t i a l l y  developed using cold-test models 

scaled 1 O : l .  These models were a l so  used t o  ver i fy  the  c i r c u i t  propagation 
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charac te r i s t ics  The f i n a l  TWT c i r c u i t  assemblies used scaled 

waveguide/circuit t rans i t ions  t o  achieve acceptable matches and insertion 

loss . 
The f i r s t  tube used two c i r c u i t  assemblies separated by a sever gap, 

with a "beam shaver" and "tail pipe" assembly before and a f t e r  the active 
c i r c u i t  sections. 

four waveguide/circuit t rans i t ions .  
t he  r f  power delivered t o  the two sever loads were measured through these 
sever-waveguide par ts .  

improvements for vacuum in tegr i ty .  

The planned "external sever" required tha t  the tube use 

The insertion lo s s  of each section and 

The second tube was bu i l t  w i t h  only minor 

Both tubes tes ted  very much as predicted and provided broader 

bandwidth than expected. 
very high compared with a space-harmonic TWT and very close t o  predicted 

values . 
The gain/inch and the electronic efficiency were 
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2. INTRODUCTION 

This f i n a l  report covers a study program supporting the development of 
a n  unconventional, narrow-band communication t ravel ing wave tube (TWT) . The 

principal task  was the  construction of two  tubes with an interaction c i r c u i t  

comprising two  formed ladder elements supported on diamond cubes within a 

double-ridge waveguide. The formed ladders allowed a conventional pencil  
beam t o  be used. 

providing two t i m e s  t h e  Brillouin ax ia l  f i e ld .  

The pencil beam w a s  focused by a permanent magnet 

2.1 GENERAL 

The base-line e f fo r t s  were motivated by in t e re s t  i n  a low-cost 

a l ternat ive t o  coupled-cavity TWTs fo r  millimeter wavelengths and high power 

leve ls  . 
al ternat ive.  The study proposed a ladder-based c i r c u i t  for  operation i n  the  

forward/fundamental mode. 

impedance, gain/inch and interaction efficiency. 
minimum beam power t o  achieve r f  rated power, as w e l l  as a conventional 

pencil  beam focused by a rad ia l ly  magnetized permanent magnet, would be 
implemented. 

millimeter-wave communication amplification. 

A previous eleven-month study program (NAS 3-21930) addressed t h i s  

The obvious advantages would be high interaction 

A short  c i r cu i t  length and 

The predicted bandwidth of only 1% would be suff ic ient  fo r  

2 02 BACKGROUND HISTORY 

I n  the early 1950s, t h e  t h i n ,  f lat  ladder w a s  recognized as a pract ical  
periodic element at  millimeter wavelengths, provided one could invent a 

slow-wave interaction c i r c u i t  incorporating it. ( 3 , 4 )  

The first ladder-based slow-wave c i r cu i t  studied was a plain,  
rectangular waveguide with t h e  ladder i n s t a l l e d  i n  the  broad wa l l .  

span was less than the  waveguide breadth. ( 5 
achieved over a useful bandwidth extending downward from the  half-wave 

resonance frequency of the rung. 
ridge w a s  introduced within the  waveguide. (6) 
wave" and the bandwidth depended on both the  ridge-to-ladder capacitance and 

The.rung 
Slow-wave propagation -was 

The bandwidth became greater  yet when a 

The propagation was "forward 
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t h e  space avai lable  fo r  loops of rf magnetic f i e l d  t o  expand beyond the  rung 

anchor points. 

During t h i s  period and beyond, a s ingle  ridge plus a th in ,  f la t  ladder  

combination appeared i n  low-voltage tubes -- primarily backward-wave 
osc i l l a to r s  (BWOs) f o r  frequencies up t o  300 GHz. (7-9) 
the  disposit ion of metal around t h e  rung anchor points var ied,  (lo) hence the 
bandwidth contribution relative t o  t h a t  from the  ladder-to-ridge capacitance 

was not constant . The current desire for  higher power leve ls  requires 
t h a t  t he  rungs be anchored d i r ec t ly  and perpendicular t o  f l a t ,  so l id  walls 
t o  maximize rung cooling,(12) SO t h a t  t he  bandwidth must be determined 

so le ly  by the  ridge capacitance. 

s t ruc ture ' s  f i e l d  and impedances s t ipulated extensive f l a t  walls normal t o  

t h e  array of rungs. (12-15) 
charac te r i s t ic  of millimeter-wave tubes i n  the  1950s and ear ly  1960s. 
order t o  avoid an unreasonably f ine  ladder p i tch ,  only space-harmonic 

interact ion was considered at these low beam veloc i t ies .  The beam-wave 
phase s h i f t  per period was between 'II and 2n f o r  a BWO and 2n t o  ~'II for  an 
amplifier. 
was t ha t  the  tens-of-kV beam voltages favored today would permit 

nonspace-harmonic operation at  millimeter wavelengths of a "forward-wave" 

ladder-based amplifier with a r e l a t ive ly  coarse pitch.  

In these designs, 

Most ana ly t ic  e f f o r t s  t o  model the  

%am voltages of at most a f e w  k i lovol t s  were 

I n  

Thus the  first point made i n  H. G .  Kosmahl's 1978 presentation 

(15) 

"Fundamental/forward" TWT interact ion implies per se a r e l a t ive ly  high 

gain/inch, but Kosmahl's second point w&s t ha t  the g a i n  rate would benefit  

fur ther  from the  high in te rac t ion  impedance associated w i t h  the  ladder .  

This impedance is due, i n  part, t o  the  rung resonance at a frequency close 

t o  the  operating frequency and the  consequent high dispersion and low group 

ve loc i t ies .  

which might, however, be acceptable f o r  certain applications.  

These propert ies  a l s o  predict  a rather  narrow "hot" bandwidth 

The pr inciples  above led t o  the  previous study program (2) and t o t h e  

present development program. 

evaluating TWT designs t h a t  were practical embodiments of Kosmahl's 

pr inciples ,  some cold-test  experimentation with an intent ional ly  simplified 
slow-wave s t ruc ture  was done. These experiments showed t h e  effects  of 

I n  t he  study program, p r io r  t o  devising and 
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dimensional changes i n  a geometry featuring the  basic s t ruc tu ra l  
elements -- rungs, ridge and s ide  walls ( see  Figure 1). Other tests 
included measurements of the  effects of double ridges on t h e  LO-& curve and 
interact ion impedance. 

The move from the  earlier space-harmonic and low-power approaches t o  
the  forward/fundamental approach and high power for  millimeter wavelengths 
created a very d i f fe ren t  s i tua t ion ,  
f e w  MW/cm2 were necessary and pencil-beam opt ics  were the only means fo r  
making t h i s  manageable from the  viewpoint of both the  gun and t h e  

interact ion s t ructure .  On t h e  interact ion s t ructure  s ide ,  a l o w  percentage 
interception is  consistent with having a pencil  beam i n  a round "tunnel." 

On t h e  gun s i d e ,  a conventional axisymmetric gun, su f f i c i en t ly  convergent t o  

avoid undue cathode loading, permitted the  requis i te  100 A/cm o r  more of 
beam current,  

Beam power dens i t ies  on t h e  order of a 

2 

The simple ladder-plus-ridge design is  shown at t h e  l e f t  i n  Figure 1. 

Tfie ladder  is  then formed and doubled t o  allow the  passage of a pencil beam; 

and t o  increase thermal capacity f o r  handling beam interception, there  i s  

thermal anchoring t o  d i e l ec t r i c  posts. 
non-circular tunnel f o r  t h e  beam. This design provides thermal paths 

through the  dielectric posts t o  the  ridges for beam-interception heating 
localized where the rungs are c loses t  t o  t h e  beam. 
occurs mainly near the  s ide  walls t o  which there  is a d i r ec t  connection. 

The forming of the  ladder produces a 

RF heating i n  the  rungs 

These ideas underly t h e  basic "TunneLadder" interact ion s t ruc ture  at  
the  r igh t  i n  Figure 1, w i t h  two ridges and a ladder assembled fromtwo 

ident ica l  components. 

a more or less oval beam tunnel (with beam interception occurring 

predominantly at t h e  two posit ions where heat can travel d i r ec t ly  outward 

through t h e  d i e l e c t r i c  support rods) . 
permit propagation of a mode which is  TE a t  the  lowest propagating frequency 

and whose f i e l d s  are antisymmetric with respect t o  the  ladder -- i n  addition 

t o  the  desired mode which is similarly TE-derived but symmetric with respect 

t o  the  ladder. 
f o r  t h e  desired (symmetric) mode is lower than i f  t h e  rungs were s t ra ight ,  

As s ta ted ,  t h e  shaping of t h e  ladder halves provides 

The double-ridge system now does .  

With the  new ladder-half shaping, t h e  passband upper edge 
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requiring inward adjustment of t he  enclosure s i d e  walls. 
passband upper edge fo r  the antisymmetric mode is considerably and safely 

higher -- by the r a t i o  of the t o t a l  rung length t o  half the circumference of 

t he  more or less oval tunnel. 

However, the  

The d ie l ec t r i c  supports proposed are of high-thermal-conductivity !&pe 
I I A  diamond, nominally 0.25 mm square i n  cross-section. 
ladder  rungs and ridges is zirconium doped to ef fec t  a strong thermo- 
compression bond t o  the diamond without r i s k  of contaminating nearby 
exposed diamond surfaces. 

bonding are  given i n  Section 3. 

The copper of the 

Details relating t o  these supports and the  

2.3 STATEMENT OF WORK 

The main objectives of t h i s  follow-on program t o  NAS-3-21930 are: 

- Design a 29 GHz TWT based on the  data obtained on NASA 

Contract 3-21930. 

- Fabricate two finished TWTs for  delivery t o  NASA. "Finished tube" 

means a completely assembled TWT with gun, col lector ,  slow-wave 

c i r c u i t ,  and input and output couplers. 

- The TwTs s h a l l  be performance-tested against the required 

objectives. The main objectives are: 

- RF output power at  saturation: 200 W 

- Minimum electronic  efficiency at  saturation: 5% 

- Operating frequency: 29 GHz 

- Bandwidth (1 .O dB below peak power) : 1.0 percent of operating 

frequency 

- Gain at saturation: 25 dB 
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2.4 

- Tube capab le  of o p e r a t i n g  wi thout  damage i n t o  a l o a d  wi th  a 
VSWR of up t o  1.25. 

- Power and g a i n  s p e c i f i e d  f o r  a maximum l o a d  VSWR of 1.25. 

- Tube l e n g t h  t o  accommodate f o c u s i n g  with a l i g h t w e i g h t  
permanent-magnet c i r c u i t .  

- E l e c t r o n  gun t o  i n c o r p o r a t e  an anode i s o l a t e d  from ground. 

- C o l l e c t o r  t o  be "undepressed" bucket  t y p e ,  i s o l a t e d  from t u b e  

body. 

- E l e c t r o n  beam t r ansmiss ion :  i n  d c  o p e r a t i o n  > 99%, a t  rf - 
s a t u r a t i o n  > 95%. - 

- Inpu t  and o u t p u t  c o u p l e r s  s h a l l  mate wi th  s t anda rd  RG-96/U 

waveguide. 

ACHIEVEMENTS 

The program achieved  n e a r l y  a l l  of t he  o b j e c t i v e s ,  and surpassed  most 
o f  them. Matched a g a i n s t  t h e  s t a t e m e n t  o f  work, t h e  fo l lowing  items 
i n d i c a t e  objectives met or exceeded: 

- Two 29 GHz t u b e s ,  based on t h e  e a r l i e r  c o n t r a c t  results, were 

des igned ,  b u i l t ,  tested and d e l i v e r e d  t o  NASA. 

- The t u b e s  were tested and performance exceeded a l l  test 
s p e c i f i c a t i o n s  excep t  f o r  a few minor ones.  Tube performance, as  
matched a g a i n s t  the o b j e c t i v e s ,  was: 

- S a t u r a t e d  o u t p u t  was 400 k', compared with t h e  desired 

200 watts. 
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- M i n i m u m  electronic efficiency was > 175, compared with the 

5% desired minimum. 

- Operating frequency was centered at 28.2 GHz, compared wi th  

29 GHz. This difference could easi ly  be compensated with 
minor c i r cu i t  geometry changes . 

- Instantaneous "hot" bandwidth was 2.275, compared with the  

1 .O$ m i n i m u m  ob j ective . 
- Gain at rated power was 28 dE, compared with the 25 dB 

obj ec t ive . 
- The tube length accommodated focusing w i t h  an existing 

permanent -magnet c i r c u i t  . 
- The electron gun incorporated an anode isolated from ground. 

- The col lector  was isolated f romthe  tube body. 

- Beam transmission was 97% i n  dc operation and 90% i n  rf 
operation. Tests indicated tha t  t h i s  could be improved i n  
l a t e r  tubes t o  meet the 99% i n  dc operation and the 95% i n  rf 
operation . 

- A l l  tube couplers mated wi th  standard RG-96/U waveguide. 

Apart from t h e  degree t o  which performance exceeded tha t  of the 
Statement of Work, the  tubes proved extremely s table  at the operating 

voltage with no drive-induced osc i l la t ion .  
w i t h i n  2 dB at  53 dBm output. 

i n  small- and large-signal calculations. Agreement between predicted and 

actual  performance values is excellent,  considering t h i s  is a new device. 

The design parameters and predicted and actual  performance data are  given i n  
Table 1. 

Tube amplification was l i nea r  

Tube performance had been computer-predicted 
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Table 1 

Predicted Actual 

Operating Voltage 10 kV 
Microper veance 0.2 
Gain/inch 58 dB/in 

1 dB Bandwidth 1 +% 
Saturated Power 480 watts 

Electronic Efficiency 24% 

Rated Operating Power 200 watts  

10 kV 
0.215 
- > 52 dB/in 

2.27% 
400 watts 
> 17% measured 

effective efficiency 

200 watts 

Details of the actual performance, cold-test work and design are 

covered i n  Section 3. 
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3. ACCOMPLISHMENTS 

This  s e c t i o n  describes the  t e c h n i c a l  and new t e c h n o l o g i c a l  achievements  
of t h i s  development program. 
used i n  t h e  first two t u b e s  is d i scussed  i n  Sec t ion .3 .1 .  Gun d e s i g n ,  
focus ing  d e s i g n  and c i r c u i t  f a b r i c a t i o n  de t a i l s  are d i s c u s s e d  i n  S e c t i o n s  
3.2.1 through 3.3.3, while t h e  exper imenta l  test r e s u l t s  for the  two t u b e s  
are given i n  S e c t i o n  3-30 The s u c c e s s  of t h i s  program c r i t i c a l l y  depended 
on t h e  a c t u a l - s i z e  f a b r i c a t i o n  o f  t h e  shaped and chemica l ly  mi l led  ladders ,  

t h e  b r a z i n g  of these ladders t o  t h e  diamond cube s u p p o r t s ,  and the b r a z i n g  
o f  these s u p p o r t s  t o  t h e  waveguide r i d g e s .  The d e t a i l s  of these mi l e s tone  
achievements are d i s c u s s e d  i n  S e c t i o n  3.2.3. 

The c o l d - t e s t  work which d e f i n e d  t h e  circuits 

3.1 COLD-TEST EXPERIMENTS 

The actual c i r cu i t  des ign  r e s u l t e d  from c o l d - t e s t  exper iments  wi th  6 

10-times scaled model o f  a 29 GHz circuit whose geometry was determined from 
t h e  results of p rev ious  NASA Con t rac t  3-21930. A s  mentioned earlier,  t h e  

i n t e r a c t i o n  s t r u c t u r e  used two shaped l a d d e r  e l emen t s ,  each suppor ted  by 

diamond cubes brazed  t o  ha l f  of a double-r idge waveguide. 
h a l v e s  were mated, forming a TunneLadder circuit  with its two sets of 
diamond cube s u p p o r t s  i n  a double-r idge waveguide. The p r i o r  NASA c o n t r a c t  
a l s o  e s t ab l i shed  t h a t  t h e  dielectric cubes would be made from Type I I A  non- 
s y n t h e t i c  gem-quality diamond because of its e x c e p t i o n a l l y  high thermal 
c o n d u c t i v i t y .  

Two symmetr ical  

The f irst  cold-test model i n  t h i s  program was based on t h e  p r i o r  NASA 

model. The 29 GHz t u b e  used: 

- 
- Type I I A  diamond s u p p o r t  cubes.  
- 

Formed l adde r s  made by chemical  m i l l i n g .  

Amzirc a l l o y  f o r  a c t i v e  b r a z e s  t o  the  ladder rungs  and 
waveguide ridges. 

However the first scale model used S t y c a s t  t o  r e p r e s e n t  t he  diamond cubes  

and machined copper  f o r  t h e  chemically mi l led  Amzirc ladders.  The rest of 
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t h e  cold-test model was of aluminum. P a r t s  of t h e  waveguide s i d e w a l l s  were 
movable t o  e s t a b l i s h  t h e  f requency  band. S idewa l l  dimensions were t h e  same 
i n  t h e  f i n a l  waveguide d e s i g n  t o  s i m p l i f y  p a r t s  and subassembly f a b r i c a t i o n .  

T h e a - 8  diagram for a t y p i c a l  TunneLadder c i r c u i t  is shown i n  F i g u r e  2. 

T e s t s  inc luded  va ry ing  t h e  diamond-cube width and t h e  ridged-waveguide 
w a l l  s p a c i n g  wi th  r e s u l t s  a s  shown i n  F i g u r e  3, which e s t ab l i shed  t h e  

c i r c u i t  dimensions for  t h e  t u b e s  of t h i s  program. The h a l f - s t r u c t u r e  
drawing of F i g u r e  4 g i v e s  t h e  10X-scaled dimensions.  The cold-test a-6 and 
p e r t u r b a t i o n  d a t a  were used i n  t h e  small- and l a r g e - s i g n a l  programs t o  
e s t a b l i s h  t u b e  performance,  w i t h  computer-predicted d a t a  a s  shown i n  

F i g u r e  5. 

After complet ing t h e  c i r c u i t  d e s i g n ,  cold-test e f for t  concen t r a t ed  on 
t h e  wavegu ide /c i r cu i t  t r a n s i t i o n .  The l0X-scaled c i r c u i t  model is shown i n  
F i g u r e  6. 
F i g u r e  7. 
i n c l u d i n g  t h e  d imens ions  of t h e  coup le r  t u n i n g  elements:  i n d u c t i v e  i r is ,  
c a p a c i t i v e  p o s t  and reduced-height  waveguide s h o r t .  After op t imiz ing  t h e  

t u n i n g  e lements  of t h e  t r a n s i t i o n ,  t h e  r e s u l t  of t h i s  matching e f fo r t  is a s  
shown i n  F i g u r e  9. 

The s c a l e d  wavegu ide - t r ans i t i on  model is shown w i t h  it i n  
The f i n a l  c o l d - t e s t  c o u p l e r  d e s i g n  is shown i n  F i g u r e  8, 

The VSWR is better t h a n  1.6:l o v e r  a 5% bandwidth and better t h a n  2:l 

ove r  10%. T h i s  is  more than  s a t i s f a c t o r y  for t h e  expec ted  1 t o  3% '*hot" 
bandwidth. 
for  t h e  a c t u a l  29 GHz c i r c u i t ,  even wi th  a double-ended matched c i r c u i t  a s  
implemented for t h e  first models. The o n l y  other cold-test exper iments  were 
under taken  a f t e r  l a t e r  work showed t h a t  t h e  diamond cubes  would have  t o  have 
metalized caps  t o  accomplish b r a z i n g  t o  t h e  Amzirc ladder  rungs.  
tests forecast a 2 t o  5% lower ing  of t h e  o p e r a t i n g  f requency  band, as l a t e r  
v e r i f i e d  i n  a c t u a l  t u b e  tests. The necessa ry  changes t o  t h e  c i r c u i t  d e s i g n  
t o  move t h e  o p e r a t i n g  f r equency  band back t o  29 GHz would be a s h o r t e n i n g  of 
t h e  ladder rungs  and a cor responding  d e c r e a s e  i n  t h e  wid th  of t h e  double- 
r i d g e  waveguide ha lves .  The re  would be a machining change i n  t h e  c i r c u i t  
h a l f  b locks  o n l y  and no changes i n  any assembly f i x t u r e .  

It shou ld  be p o s s i b l e  t o  ach ieve  a maximum VSWR better t h a n  2:l 

These 
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3.2 TUBE DESIGN 

The following sections describe the  important component designs and 

The Pierce gun and focusing system design and t h e i r  test ver i f icat ions.  

tests are  discussed i n  Sections 3.2.1 and 3.2.2, respectively. 

design and fabrication are  discussed i n  Section 302.3, followed by d e t a i l s  
of tube assembly i n  Section 3.2c4. 

Circuit 

The sat isfactory completion of a l l  component designs, fabrication, and 

t e s t ing  was essent ia l  t o  the success of the  f i n a l  device, with various 
component designs evolving t o  achieve sa t i s fac tory  fabrication processes, 
The design interact ions are described i n  the  appropriate subsections. 

3.2.1 Pierce Gun 

The design of t h e  Pierce gun was based on that of a low- 

frequency tube having a microperveance of 0.2 with a f a i r l y  high area 
convergence of 55. The new gun was t es ted  i n  the  beam analyzer several 
times at various beam voltages t o  es tabl ish thermal velocity properties and 
actual  projected beam size.  

and the details of the  electrode spacing are shown i n  Figure 10. 

beam prof i les  are  shown i n  Figure 11, revealing a rectangular-profile beam 

at a distance of 0.375 inches from the cathode. The beam will have already 

been controlled by the  magnetic f i e l d  at  t h i s  dis tance and remain w e l l  
controlled through the rest of the magnetic c i r cu i t .  

t h e  excellent transmission achieved i n  t he  actual  tubes. 

beam diameter versus dis tance from t h e  cathode, fo r  three cathode voltages, 
are shown i n  Figure 12, with t h e  effect of thermal ve loc i t ies  revealed i n  
the  sens i t i v i ty  t o  voltage. 
0.0185 inches, indicating a f i l l i n g  fac tor  of 0.75, but with magnetic 

compression t h i s  would be reduced t o  0.6 (diameter = 0.015 inch) . 

The gun design, its high-voltage seal assembly, 
Actual 

This is  confirmed by 

Plots of projected 

A t  10 kV the  e l ec t ros t a t i c  beam minimum is  

Figure 13 reiterates the  contribution of thermal velocity e f fec ts  t o  

the above data. 

10 kV for  a gun mlcroperveance of 0.2. 

The e f f ec t s  on beam diameter are very s ignif icant  even a t  
Beam focusing may be seriously 
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a f f e c t e d  i f  changes i n  ca thode  e m i s s i v i t y  change the rma l  v e l o c i t i e s  over  t h e  

l i f e  of t h e  cathode. 

3.2.2 Focusing Design 

The s e l e c t e d  focus ing  sys tem made u s e  of an e x i s t i n g  r a d i a l l y  
magnetized permanent magnet compr is ing  two r a d i a l l y  magnetized SmCo 

- one placed around t h e  gun and t h e  o t h e r  around t h e  c o l l e c t o r .  An i r o n  
c a s i n g  comple tes  t h e  f l u x  pa th .  

r i n g s  5 

The magnet assembly i s  shown i n  F igu re  14. 

An a c t u a l  f i e l d  p l o t  is shown i n  F i g u r e  15, i n d i c a t i n g  an a x i a l  
f i e l d  of 3120 t o  3'700 gauss .  The "saddleq1 i n  t h e  ax ia l  f i e l d  was p r e d i c t e d  
i n  computer des ign  and can be reduced (by r e f inemen t s  i n  magnet des ign  and 
m a t e r i a l ) .  
program. The a x i a l  f i e l d  is twice t h e  B r i l l o u i n  v a l u e  and is  provided  over  

t h e  magnet 's  59.8 m (2.355 i n c h e s )  gap. 

Time c o n s t r a i n t s  d i d  n o t  pe rmi t  such  r e f i n e m e n t s  for t h e  p r e s e n t  

The focus ing  of t h e  microperveance-0.2 gun i n  i t s  magnet was 
v e r i f i e d  by b u i l d i n g  a '!beam s t i c k "  wi th  a d r i f t  r e g i o n  2.5 i n c h e s  long  and 
minimum t u n n e l  d iameter  o f  0.5 mm (0.020 i n c h e s ) .  The beam t r a n s m i s s i o n  a t  
10 kV was 96%, which was achieved  by moving t h e  gun O.04O1l i n t o  t h e  magnet. 
Moving t h e  gun changed t h e  magnet ic  f i e l d  e n t r a n c e  c o n d i t i o n s .  T h i s  was t h e  
maximum d i s t a n c e  t h e  gun cou ld  b e  moved toward t h e  magnet and t h e  
t r a n s m i s s i o n  was st i l l  i n c r e a s i n g  i n d i c a t i n g  t h a t  f u r t h e r  movement of t h e  
gun toward t h e  magnet p o l e  p i e c e  would i n c r e a s e  t h e  t r a n s m i s s i o n  beyond t h a t  
achieved i n  t h i s  test. Eeam-stick subassembl i e s  a r e  shown i n  F i g u r e  16. 

3.2.3 RF C i r c u i t  Design 

Three  main t e c h n o l o g i c a l  developments were achieved ,  p e r m i t t i n g  
successful manufacture  of t h e  t o t a l  c i r c u i t :  f a b r i c a t i o n  of t h e  Amzirc 
l adde r  elements, a c t i v e  b r a z i n g  of diamond cubes  t o  t h e  r i d g e  and t o  t h e  
l a d d e r  rungs ,  and f a b r i c a t i o n  and assembly of complete  circuit  sections. 

These developments a r e  o u t l i n e d  i n  S e c t i o n  3.2.3.1, 3.2.3.2 and 3.2.3.3, 
r e s p e c t i v e l y .  
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3.2.3.1 Ladder F a b r i c a t i o n  

The s u c c e s s  o f  t h i s  program c r i t i c a l l y  depended on t h e  

a c t u a l - s i z e  f a b r i c a t i o n  o f  the  shaped and chemica l ly  m i l l e d  l a d d e r  e le  
These were s a t i s f a c t o r i l y  completed by Elcon, I n c . , - o f  San Jo 
photo of F i g u r e  17 i n d i c a t e s .  
dimensions was he ld  t o  w i t h i n  20.000 inches .  The t o t a l  ladder  l e n g t h  was 
c o n t r o l l e d  t o  p reven t  "accum sN of t h e  i n d i v i d u a l  rungs 
and gaps. These l a d d e r s  a r e  oped w i t h  zirconium 

t h a t  e n a b l e s  a c t i v e - d i f f u s i o n  braz ing .  
(2.5 m i l s ) ,  wi th  t h e  rungs  0.152 mm (6 m i l s )  wide a t  a p i t c h  of 0.318 mm 
(12.5 m i l s ) .  

The t o l e r a n c e  on i n d i v i d u a l  rung and gap 

The f o i l  t h i c k n e s s  is  0.0635 mm 

3.2.3.2 A c t i v e  D i f f u s i o n  Rraz ing  

T h i s  s e c t i o n  cove r s  t h e  t e c h n o l o g i c a l  developments which 

allowed t h e  diamond cubes  t o  be brazed  t o  t h e  r idge  u s i n g  a t r u e  a c t i v e -  
d i f f u s i o n  braze  as d e t a i l e d  i n  S e c t i o n  3.2.3.2.1. The techn ique  o f  
t h e n  b r a z i n g  t h e  diamond cubes t o  t h e  l a d d e r  is descr ibed i n  Sec t ion  
3.2.3.2.2. 
i n  t h e  waveguide b lock ,  and wi th  a l adde r  brazed t o  both  diamonds and 
waveguide block. 

F i g u r e  18 shows subassembl ies  w i t h  diamonds brazed t o  t h e  r idge  

3.2.3.2.1 Diamond Cube/Ridge Braze 

The f irst  c r i t i c a l  p rocedure  on which t he  program 
depended was t h e  b r a z i n g  of  t h e  diamond cubes  to  t h e  waveguide ridge.  

diamond cubes,  each 0.3 2 0.001 by 0.38 2 0.02 by 0.2 - + 0.02 m, a r e  brazed 
o n t o  each waveguide r i d g e  w i t h  t h e  a i d  of a chemica l ly  mil led 

a l ignment  f i x t u r e .  
conduc t iv i ty .  F i g u r e  19 compares diamonds the rma l ly  w i t h  other i n s u l a t o r s  

and conductors .  
conductor  is almost an o rde rb f  magnitude better than  copper ,  which is  o n l y  
s l i g h t l y  behind s i l v e r  as  t h e  best metal conductor .  A t echn ique  was needed 
t o  braze  t h e  diamond cubes  t o  t h e  copper r idge .  Fo r  t h i s  purpose,  t h e  t o p  
s u r f a c e  of t h e  r idge  was made of Amzirc and special  f i x t u r e s  were designed 

The 

Diamond is used because o f  its s u p e r i o r  thermal 

A t  room tempera tu re ,  Type I I A  diamond as a the rma l  
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t o  p rov ide  t h e  necessa ry  i n t e r  
F i g u r e  20. The procedure  evo 

b r a z e  c y c l e ,  

developed t o  braze t 
appl ied d i r e c t l y  t o  
rungs,  T h i s  was n o t  
n e c e s s a r y  t o  a c h i e v e  t h e  a c t i v e  d i f f u s i o n  b r a z e  f l a t t e n e d  and widened t h e  

l adde r  rungs  so t h a t  t h e y  extended beyond t h e  mating f a c e  of t h e  diamond 
cube, To e l i m i n a t e  t h e  e x c e s s  p r e s s u r e ,  a go ld -d i f fus ion  b r a z e  was 
s u b s t i t u t e d .  F i r s t ,  a t e c h n i q u e  was developed t o  m e t a l i z e  t h e  t o p  f a c e  of 

each diamond cube  w i t h  Amzirc and gold.  The l adde r  rungs  were then  s i n t e r e d  
t o  t h e  metalized diamond cukes  by a d i f f u s i o n  gold b r a z e  w i t h  a minimum 

of p r e s s u r e .  
diamonds and waveguide block, is shown i n  F i g u r e  21. 

A c i r c u i t - h a l f ,  c o n s i s t i n g  of a shaped l a d d e r  brazed  t o  

Another poss ib le  method of overcoming t h e  problem of low 

c o n t a c t  p r e s s u r e  wi thou t  d i s t o r t i n g  t h e  c i r c u i t  e lement  is t o  make t h e  

c i r c u i t  e lement  o u t  of d i s p e r s i o n e d ,  s t r eng thened  copper. Such a m a t e r i a l  
i s  Glidcop, a form of OFHC copper w i t h  A 1 2 0 3  powder d ispersed  through it. 
Actua l  p a r t s  were made from t h i s  m a t e r i a l  bu t  exper iments  i n  b r a z i n g  showed 

t h a t  the  m a t e r i a l  dimensions changed d u r i n g  f i r i n g  and b r a z i n g  o p e r a t i o n s .  
Con t ro l  of t h e  changes was n o t  immediately e v i d e n t  and f u r t h e r  tests of t h e  

c i r c u i t  e lements  were d i s c o n t i n u e d  s i n c e  t h e  d i f f u s i o n  braze of the  c i r c u i t  
e lement  t o  t h e  diamond me ta l i zed  t o p  was so s u c c e s s f u l .  

The n e x t  s t e p  was t o  machine t h e  waveguide-half  blocks 

p r e p a r a t o r y  to  b r a z i n g  two of them i n t o  a comple te  TunneLadder 
assembly, The process involved  t h e  d e s i g n  and f a b r i c a t i o n  of three f i x t u r e s  
t o  p r o t e c t  and a l i g n  t h e  c i r c u i t  h a l v e s  d u r i n g  t h e  machining ope ra t ion .  The 
end r e s u l t  was a machined h a l f  c i r c u i t  s e c t i o n ,  r eady  t o  be brazed  t o  its 

mate, and both r eady  to  be brazed  t o  t h e  i n p u t / o u t p u t  waveguide t r a n s i t i o n s  
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and t h e  cooling-block subassemblies .  

f o r  rf c i r c u i  
F i g u r e s  22 - 26. F i  e b r a z i n g  of 
waveguide block and t h e  subsequent  machining t o  
r idge.  

shows t h e  b raze  f i x t u r e ,  t h e  chemica l ly  mi l led  diamond cube s p a c e r  and an 
a d d i t i o n a l  s t r i p  of Amzirc f o i l  ( t o  e n s u r e  s u f f i c i e n t  z i rconium atoms a t  t h e  
i n t e r f a c e ) .  These a r e  hea ted  i n  hel ium a t  8OO0C i n  t h e  s p e c i a l  temperature- 
compensated fixture. 
t h e  t o p  o f  t h e  diamond cubes. 
Amzirc f o i l  and s p e c i a l  temperature-compensated f i x t u r e .  

F i g u r e  22 a l s o  shows t h e  diamond-to-ridge braze.  A d e t a i l  i n s e t  

The l a s t  i n s e t  i n  F i g u r e  22 shows t h e  m e t a l i z i n g  of 
T h i s  is achieved  wi th  a gold-topped s t r i p  of 

F i g u r e  23 first shows t h e  trimming and height-s iz ing 

o p e r a t i o n  r e q u i r e d  t o  
l a d d e r  element.  With f i x t u r e  shown, 
b raze  is done a l s o  a t  8OO0C i n  helium. 

ture-compensated b r a z i n g  f i x t u r e  is 

e r a t u r e  rise 
s been h i g h l y  successfu l :  

t any rejects due t o  loose diamonds (42 
r-rung brazes. 

F i g u r e  25 d e t a i l s  t h e  procedure f o r  b r a z i n g  diamond 
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FIGURE 23. ASSEMBLY PROCEDURE THROUGH MATING OF THE TWO FINAL- 
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cubes t o  t h e  r i d g e  block. The machined r i d g e  block, t h e  space r  and 
t h e  f i x t u r e s  a r e  a l l  des iged  t o  p rov ide  t h e  necessa ry  a l ignment  and 
p r e s s u r e  . 

F i g u r e  26 o u t l i n e s  t h e  procedure  for  b r a z i n g  t h e  l a d d e r  
e lement  t o  t h e  diamonds as  well as t h e  r i d g e  block. 
of t h e  ladder  e lement ,  t h e  r i d g e d  block and t h e  f i x t u r e s  necessa ry  for 
b r a z i n g  a t  8OO0C i n  helium. 

Shown a r e  t h e  de ta i l s  

It should  be noted t h a t  t h e  diamonds have now undergone 
t h r e e  b r a z e  c y c l e s  a t  800°C i n  helium. No loose diamond b r a z e s  were 
encountered i n  any of t h e  a s sembl i e s ,  a t  l e a s t  10 of which were made. The 
brazed  l adde r - r idge  b lock  assembly must n e x t  be machined. The procedure  and 

machining f i x t u r e s  evolved over  a pe r iod  of three t o  s i x  months. The blocks 

had t o  be machined so t h a t  two of them would match up, rung  t o  rung,  ove r  
t h e  t o t a l  l e n g t h  of t h e  c i r c u i t .  
waveguide had t o  be machined t o  accomnodate t h e  c i r c u i t  t r a n s i t i o n .  The 

f i x t u r e s  n o t  o n l y  he lped  i n  p r e c i s e l y  machining t h e  c i r c u i t  h a l v e s  b u t  a l s o  
p r o t e c t e d  t h e  d e l i c a t e  l a d d e r  s t r u c t u r e s  from damage d u r i n g  t h e  process .  

The c o o l a n t  l i n e s  and p a r t  of t h e  

I n  summary, t h e  c i r c u i t  f a b r i c a t i o n  expe r imen t s  l e d  t o  

t h e  fo l lowing  o b s e r v a t i o n s  and conc lus ions  concern ing  copper/diamond bonds: 

1. 

2. 

3. 

4. 

An a c t i v e  metal must be p r e s e n t ;  t h e  z i rconium 
c o n t e n t  of Amzirc p r o v i d e s  t h i s .  

The b r a z i n g  atmosphere must be t o t a l l y  
contaminant - f ree ,  lest  ve ry  weak bonds r e s u l t .  
Helium is used as it h a s  fewer contaminants  t han  are  
t y p i c a l l y  encountered  i n  "vacuum brazing".  

The b r a z i n g  t e m p e r a t u r e  must be a s  low a s  p o s s i b l e  
t o  f u r t h e r  minimize contaminat ion  r i s k ;  8@0°C was 

selected. 

A l l  f i x t u r e s  must be des igned  t o  avoid c r e a t i n g  

4 1  
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s h e a r  forces i n  t h e  copper/diamond i n t e r f a c e  p lane  
which would provoke bond f a i l u r e .  Chemical ly  m i l l e d  

copper f i x t u r e s  are therefore used  for spac ing ,  and 

Type 304 s t a i n l e s s  steel f i x t u r e s  (expans ion  
c o e f f i c i e n t  same a s  for copper t o  w i t h i n  1%) for 
apply ing  p r e s s u r e  t o  t h e  diamond dice. 

t u n g s t e n ,  w i th  i ts  a b i l i t y  t o  resist deformat ion  
under  p r e s s u r e ,  might be  preferable, its thermal 
expans ion  c o e f f i c i e n t  is o n l y  about  24% t h a t  of 

copper, whereby t h e  c o n t r a c t i o n  d i f f e r e n c e  on cool- 
down cou ld  break t h e  diamond/copper bonds.) 

(Although 

5 .  Rungldiamond bonding must n o t  c a u s e  l a d d e r  rung  
d i s t o r t i o n .  Given t h e  s m a l l  rung cross s e c t i o n  t h e  

p r e s s u r e  needed fo r  t r u e  a c t i v e  meta l  bonding would 
indeed  r e s u l t  i n  d i s t o r t i o n .  The t echn ique  is 
t h e r e f o r e  supplemented by go ld -d i f fus ion  bonding, 
which is also used t o  a t t a c h  t h e  ladder-rung ends t o  
t h e  e n c l o s i n g  c a v i t y .  

3.2.3.3.2 Waveguide Design and Braz ing  Technique t o  
J o i n  t h e  C i r c u i t  Halves  

The nex t  o p e r a t i o n  is t h e  b r a z i n g  of t h e  two TunneLadder 
c i r c u i t  h a l v e s  wi th  t h e  waveguide t r a n s i t i o n  subassemblies .  For  t h i s ,  there 

was ano the r  temperature-compensated f i x t u r e ,  compl ica ted  by t h e  number of 
subassembl ies  i n  t h e  ensemble,  bu t  y e t  l i k e  a " four  p o r t "  v e r s i o n  
of t h e  p rev ious  simpler f i x t u r e s .  

The i n p u t / o u t p u t  waveguide subassembl ies  each have a 
l e n g t h  of waveguide t a p e r i n g  from normal h e i g h t  t o  reduced he igh t .  

i n d u c t i v e  iris and c a p a c i t i v e  pos t ,  placed a t  t h e  p o i n t  of t r a n s i t i o n  t o  t h e  

The 

c i r c u i t ,  have t h e  beam a x i s  a s  t h e  a x i s  abou t  which t h e y  are symmetr ical .  
Two waveguide u n i t s  g e t  b razed  t o  two machined TunneLadder-half blocks 

(which have  been a l i g n e d  rung  t o  rung) .  
hel ium a t  800°C, t h e  f o u r t h  such  f i r i n g .  

The b r a z i n g  is by gold d i f f u s i o n  i n  

Again, no assembly was l o s t  d u r i n g  
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t h i s  o p e r a t i o n ,  f o r  a t o t a l  of f o u r  such assemblies i n  two tubes .  

3.2.3.3.3 C i r c u i t  F i n a l  Assembly Without Window 
Subassembly 

The f i n a l  s t e p  i n  TWT-section assembly is  t h e  b raz ing  of 
t h e  coolant-manifold subassembly and the h e l i a r c - b a f f l e  subassembly. T h i s  
is done a f t e r  matching feed waveguides to  t h e  c i r c u i t  s e c t i o n  through 
ad jus tment  of  t h e  c a p a c i t i v e  p o s t  and reduced-height  waveguide s h o r t .  The 

b a f f l e  assembly i n c l u d e s  t h e  hel iarc  f l a n g e  which is hel iarc-welded t o  t h e  

body shroud,  t h e r e b y  p rov id ing  t h e  vacuum seal  and a l lowing  s t a c k i n g  and 
al ignment  of t h e  v a r i o u s  t u b e  subassembl ies  shown i n  F i g u r e  27. 
i n c l u d e  t h e  coolant-manifold,  baff le ,  waveguide and c i r c u i t - b l o c k  
subassemblies .  

These 

3.2.4 Tube Assembly Design 

F i g u r e  28 shows t h e  complete  t u b e  ob ta ined  a f te r  a l i g n i n g  and 
assembl ing  t h e  c o n s t i t u e n t  u n i t s .  I n  a d d i t i o n  t o  t h e  gun, i n p u t  and ou tpu t  

TWT s e c t i o n s  and c o l l e c t o r  u n i t ,  t h e  complete  t u b e  i n c l u d e s  t h e  body shroud 
assembly having: A beam-shaver subassembly, which protects t h e  rf i n p u t  
s e c t i o n ;  t h e  vacuum window assembl ies ,  which a r e  brazed t o  t h e  feed 

waveguides; t h e  i n t e r a c t i o n - s t r u c t u r e  a l ignment  r i n g ;  and t h e  t a i l - p i p e  
assembly, which a l lows  expansion of t h e  beam e x i t i n g  t h e  o u t p u t  s e c t i o n ,  
wi thout  i n t e r c e p t i o n  i n  t h e  d r i f t  region, p r i o r  t o  c o l l e c t i o n .  The 
i n d i c a t e d  subassembl ies  a r e  shown i n  F i g u r e  29. 

It is impor t an t  t o  n o t e  t h a t  each c i r c u i t  s e c t i o n  is coupled a t  
one end t o  either an " input"  or  "outputn  waveguide, w i t h  a "sever" waveguide 
a t  t h e  other end. 
i n s e r t i o n  loss of each s e c t i o n  and of t h e  rf power d e l i v e r e d  t o  both s e v e r  

loads. 

The sever-waveguide ports  enabled  measurement of t h e  

VSWR data for the  "double=endedn i n p u t  and o u t p u t  s e c t i o n  matches 
a r e  shown i n  F i g u r e s  30 and 31 f o r  S/N 101. VSWR data  for S/N 102 were 
e s s e n t i a l l y  t h e  same, i f  n o t  s l i g h t l y  better. These data show t h a t  over  t h e  
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o p e r a t i n g  band t h e  match VSWR was better than  2:l for t h e  o u t p u t  s e c t i o n  and 

n e a r l y  a s  good for t h e  i n p u t  s e c t i o n .  

I n s e r t i o n  losses measured through each s e c t i o n  are  shown i n  
F i g u r e s  32 and 33. The loss l e v e l s  f o r  each  s e c t i o n  are h igher  t h a n  
expected, p a r t l y  a s  a r e s u l t  of t he  e x t r a  b r a z i n g  c y c l e s  expe r imen ta l ly  
i n f l i c t e d  on t h i s  i n i t i a l  t u b e  (which promoted decrease of copper 
c o n d u c t i v i t y  through a b s o r p t i o n  o f  go ld ) ,  and also because t h e  r e s i s t a n c e  of  
interfaces was n e g l e c t e d  i n  t h e  o r i g i n a l  p r o j e c t i o n s .  
c o n t r i b u t i o n  o f  SIN 101's e x t r a  b r a z i n g  c y c l e s  appea r s  t o  be s u b s t a n t i a t e d  
i n  t h e  obse rva t ion  o f  1 t o  2 dB less i n s e r t i o n  l o s s  i n  each s e c t i o n  of 

S/N 102 befo re  exhaust.  

The adverse 

The completed TunneLadder TWT, ready  f o r  exhaus t ,  is shown i n  
F i g u r e  34. Improvements i n  t h e  assembly procedure  and mechanical des ign  

permit ted f a s t e r  assembly and g r e a t e r  vacuum i n t e g r i t y  f o r  S/N 102. The 

changes were made t o  t h e  t u b e  shroud assembly and t h e  i n p u t  and ou tpu t  
sections. The changes to  t h e  t u b e  s e c t i o n ' s  assembly and subassembl ies  
procedure  allowed t h e  b r a z i n g  o f  t h e  circuit  h a l v e s ,  t h e  waveguide assembly 

and t h e  c o o l a n t  subassembly t o  be achieved i n  one b r a z e  cyc le .  The 
mechanical changes t o  t h e  shroud assembly improved t h e  vacuum i n t e g r i t y .  
The first t u b e  (SIN 101) had a sma l l  apparent  l e a k  which degraded t h e  vacuum 
enough t o  d i s a l l o w  CW ope ra t ion ;  a " v i r t u a l  l e a k "  is suspec ted  since 
t r e a t m e n t  w i t h  GEVAC was i n e f f e c t u a l .  The  second t u b e  (S/N 102) was free o f  
such  problems; it was ope ra t ed  CW f o r  both d c  and rf power. 

3.3 EXPERIMENTAL DATA 

As r e q u i r e d ,  two t u b e s  were completed and tested under  t h e  p r e s e n t  
program. T h e i r  performance w i t h  respect t o  i n s t a n t a n e o u s  "hotn bandwidth 

was better than  p r e d i c t e d ,  while it was close t o  t h e  computer p r e d i c t i o n s  
w i t h  respect t o  power, g a i n  and e f f i c i e n c y .  The performances of S/N 101 and 
SIN 102 are d i s c u s s e d  i n  d e t a i l  i n  S e c t i o n s  3.3.1 and 3.3.2, r e s p e c t i v e l y .  
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3.3.1 Performance Data f o r  S/N 101 

T h i s  t u b e  was tes 

r e s u l t s  a s  shown below. E f f  
changes i n  body c u r r e n t  w i t h  
bakeout  an u n r e p a i r a b l e  l e a k  had developed i n  
func t ioned  i n  t e manner of a v i r t u a l  leak du 
c u r r e n t  i n c r e a s e d  with d u t y  fac 
The o b t a i n i n g  o f  CW performance 
F i g u r e  35 shows S/N 101 i n  t h e  test s t a t i o n .  

3.3.1.1 Focusing Data 

The i n i t i a l  focus ing  was 60% and was inc reased  t o  96% by 
moving t h e  gun assembly 0.O4Ow towards t h e  magnet pole p iece .  
could have been moved even c l o s e r  t o  t h e  magnet po lep iece ,  f u r t h e r  
improvement might  have been p o s s i b l e .  
t h e  beamst ick)  i n d i c a t e  t h a t  t o  improve focus ing  beyond t h a t  achieved on 
t h i s  program w i l l  r e q u i r e  a s t u d y  of the gun-magnet des ign .  
recommended t h a t  i n  f u t u r e  work t b e  gun-magnet p o l e  piece des ign  be s t u d i e d  
t o  optimize t h e  t r ansmiss ion .  
t r ansmiss ion  which was l a t e r  improved t o  98%, minimum, by some shun t ing  o f  
t h e  magnet ic  f i e l d  around t h e  gun. 
i n s t a b i l i t i e s  i n  t h e  o u t p u t  c i r c u i t  which have no b e a r i n g  on normal 
performance s i n c e  t h e y  occur  o n l y  a t  beam v o l t a g e s  well below t h e  10 kV a t  
which t h e  t u b e  is  normally opera ted .  
f r e q u e n c i e s  of t h e  observed t u n a b l e  o s c i l l a t i o n s ,  i n d i c a t e  a phase- 

s h i f t - s e n s i t i v e  o s c i l l a t i o n  t r a c e a b l e  t o  c i r c u i t  mismatch. 
there is a f requency  such t h a t  t h e  g a i n  and phase s h i f t  r e i n f o r c e  t h e  

c i r c u i t  wave. 
having  better and broader-band end matches. 

If t h e  gun 

These r e s u l t s  ( a long  wi th  those of 

It is 

F i g u r e  36 shows t h e  measured beam 

The cu rve  i n d i c a t e s  c e r t a i n  low-power 

The d a t a  of F i g u r e  37, showing t h e  

For  each v o l t a g e  

O s c i l l a t i o n  of t h i s  t y p e  could  n o t  o c c u r  i n  la ter  models 

3.3.1.2 Power Output  v e r s u s  Frequency 

T e s t  data on power o u t p u t  v e r s u s  f requency  for v a r i o u s  
i n p u t  d r i v e  powers are shown i n  F i g u r e  38 and i n d i c a t e  t h e  tube's hot  
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bandwidth. A l l  test data  s u b s t a n t i a t e  p red ic t ed  performance,  b u t  show a 

cons ide rab ly  wider a c t u a l  bandwi : 2.27% w i t h  2 of g a i n  f l a t n e s s  a t  
+26 dEm i n p u t  drive',  where t u b e  r a t i o n  is st i l  t h e  l i n e a r  region.  

Opera t ion  remains almost  l i n e a r  t h e  power ou is 200 watts o v e r  p a r t  
of t h e  i n d i c a t e d  band. 

3.3.1.3 

F i g u r e  39 (see page 57) shows t h e  effect, 

l e v e l ,  of v o l t a g e  t u n i n g  on the  o u t p u t  power v e r s u s  f requency  
T h i s  r e sponse  i s  e s s e n t i a l l y  as  predicted -- lower and higher 

for one d r i v e  

r e sponse  . 
beam vo l t ages  

f avor ing  g a i n  a t  h i g h e r  and lower f r e q u e n c i e s ,  r e s p e c t i v e l y ,  so t h a t  w i t h  

v o l t a g e  t u n i n g  an  e f f e c t i v e l y  broader band of f r e q u e n c i e s  can be covered. 

3.3.1.4 Output  Power v e r s u s  I n p u t  Dr ive  

The " t r a n s f e r  curve" for 28.2 GHz is shown i n  
F i g u r e  40, r e v e a l i n g  s e v e r a l  impor t an t  performance pa rame te r s  of t h e  
Tunn eLadd er TWT . 

- A measured g a i n  o f  31 dB, or a g a i n  per u n i t  l e n g t h  

of 52 dB/in. These  v a l u e s  a r e  close t o  t h e  

predicted ones  and are c o n s i d e r a b l y  h ighe r  than  
those achieved  wi th  space-harmonic i n t e r a c t i o n .  

- A measured e f f i c i e n c y  (measured o u t p u t  power 
d i v i d e d  by beam power) of 17.5%. Assuming a 
c i r c u i t  e f f i c i e n c y  of 80%, t h e  " e l e c t r o n i c  
e f f i c i e n c y 1 *  would be ove r  21% - or n e a r  t h e  

pred ic ted  v a l u e  of 24%. 

- A t r a n s f e r  cu rve  i n d i c a t i n g  l i n e a r  a m p l i f i c a t i o n  a t  
200 W r a t e d  o u t p u t  power. 

The s u p e r i o r  performance i n d i c a t e d  by these parameters  
can o n l y  be ach ieved  wi th  a "fundamental/forward" i n t e r a c t i o n  s t r u c t u r e .  
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3.3.1.5 Collector Data  

To conclude  t h e  tes t  d a t a  for S/N 101, beam i n t e r c e p t i o n  
ve r sus  d r i v e  power is shown i n  F i g u r e  41. 

TunneLadder TWT can o p e r a t e  a t  an o v e r a l l  e f f i c i e n c y  of 30%, o r  h igher ,  

depending on t h e  minimiza t ion  of beam i n t e r c e p t i o n  "under dr ive."  

Experiments t o  d a t e  show t h a t  t h e  e l e c t r o n - o p t i c a l  d e s i g n  h a s  n o t  been 
opt imized for t h i s .  

improved col lector  e n t r a n c e  c o n d i t i o n s  and l e n s  d e s i g n  could  e a s i l y  improve 
o v e r a l l  e f f i c i e n c y  . 

T h i s  i n d i c a t e s  t h a t  t h e  

Changes i n  gun- and gap-region magnet ic  f i e l d s  and 

3.3.2 Performance Data  for S/N 102 

T h i s  t u b e  was tested i n  both pulsed  and CW o p e r a t i o n ;  u n l i k e  

S/N 101, TunneLadder TWT S/N 102 was l e a k - t i g h t  and exhaus t  processed a t  
55OoC for over  40 hour s  t o  be extremely c l ean .  
ev idence  of g a s s i n e s s  under  a l l  t es t  c o n d i t i o n s .  S/N 102 was tested w i t h  

t h e  same s e t u p ,  shown i n  F i g u r e  35, a s  f o r  S/N 101. 

It showed l i t t l e  or no 

I n  order t o  e n s u r e  t h a t  t h e  t u b e  would be s u f f i c i e n t l y  
c h a r a c t e r i z e d  before r i s k i n g  damage, most of t h e  performance d a t a  were t aken  
under  pulsed  o p e r a t i n g  c o n d i t i o n s .  As an o v e r a l l  o b s e r v a t i o n ,  these d a t a  
i n d i c a t e  t h a t  t h e  e l e c t r o n i c  performance of S/N 102 is very  s i m i l a r  t o  t h a t  

of S/N 101. I n i t i a l l y ,  a maximum t u b e  ga in  of 18 dB was observed ,  bu t  a f t e r  

running t h e  t u b e  for s e v e r a l  hour s  a t  1% d u t y ,  t h e  maximum g a i n  i n c r e a s e d  t o  
26 dB, which was h i g h  enough f o r  o p e r a t i o n  w i t h  t h e  power o u t p u t  
"sa tura ted ."  The i n i t i a l  i n c r e a s e  i n  ga in  can be exp la ined  by t h e  changing 
beam d iame te r  due t o  i o n  f o c u s i n g  of t h e  beam. The pumping speed i n  t h e  

c i r c u i t  is ext remely  slow due  t o  t h e  sma l l  t u n n e l  diameter. 
pumping speed would allow i o n  f o c u s i n g  t o  occur  u n t i l  t h e  p r e s s u r e  i n  t h e  

t u n n e l  r eg ion  improved and t h e  beam diameter i n c r e a s e d  t o  i t s  normal size. 
The beam i n c r e a s e  would be accompanied by a co r re spond ing  i n c r e a s e  i n  gain.  
Never the less ,  ga in lbandwidth  performance is  somewhat low, i n d i c a t i n g  some 
i n t e r n a l  problem, such  a s  e x c e s s  loss  a t  t h e  o u t p u t  s e v e r .  
excess loss  i n  t h e  o u t p u t  t h i s  would e x p l a i n  t h e  lower e l e c t r o n i c  e f f i c i e n c y  

The slow 

If there was 
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and t h e  lower o v e r a l l  ga in .  

s t a b i l i t y  b u t  o n l y  a s  a second order effect compared t 

The excess loss would also improve t h e  
a i n  and match. 

3.3.2.1 Focusing Data 

Beam t r a n s m i s s i o n  d a t a  are shown i n  F i g u r e  42. T h i s  

performance was subsequen t ly  improved somewhat, f i rs t  w i t h  s h u n t s ,  and l a t e r  
w i t h  a gun coi l .  However, t h e  t r a n s m i s s i o n  for S/N 102 was never  as  good a s  
for  S/N 101, and was even worse (92.8% a t  8.1 kV) under  CW o p e r a t i n g  
cond i t ions .  On t h e  other hand, no i n s t a b i l i t i e s  were detected for  t h i s  
second t u b e  a t  any vo l t age .  

3.3.2.2 Power Output  vs Frequency 

T e s t  d a t a  i n d i c a t i n g  t h e  r e l a t i o n s h i p  between f requency  

and power o u t p u t ,  a t  s a t u r a t i o n  and below, are  shown i n  F i g u r e  43. The ga in  
f l a t n e s s  for S/N 102 i s  much poorer  t han  f o r  S/N 101, as  t h e  2-dB bandwidth 
is o n l y  1.4%. 

2.8%. which is comparable w i t h  r e s u l t s  for  S/N 101. 
c a s e  exceeds 160 W. 

However, t h e  3-dB bandwidth for s a t u r a t e d  power o u t p u t  is  
Power o u t p u t  i n  t h i s  

3.3.2.3'Power Output  v s  Tuning Vol tage  

The effect of  v o l t a g e  t u n i n g  on o u t p u t  power vs  
f requency a t  c o n s t a n t  d r i v e  power is  shown i n  F i g u r e  44. 

e f f e c t i v e  bandwidth seen  i n  S/N 101 i s  n o t  a s  e v i d e n t  h e r e ,  perhaps  due t o  
t h e  same problem t h a t  r e s u l t e d  i n  t h e  lower g a i n  r e l a t i v e  t o  S/N 101. 

The i n c r e a s e  i n  

3.3.2.4 Output  Power v s  I n p u t  Dr ive  

T r a n s f e r  c u r v e s  for 27.6, 28.4 and 28.6 GHz are  shown 

i n  F i g u r e  45. 

for  S/N 101, y i e l d i n g  t h e  fo l lowing  obse rva t ions :  
The cu rve  for  28.4 GHz can  be compared w i t h  t h a t  for  28.2 GHz 

- The g a i n  is 26 dB, or  5 dB lower t h a n  for  S/N 101. 

However, i f  t h e  o u t p u t  s e v e r  is "tuned" fo r  narrow- 
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band g a i n  performance, t h e  t o t a l  and per-uni t - length 
g a i n s  f o r  both t u b  re n e a r l y  i d e n t i  

- The measured ncy was 13.81, 

correspond t o  l e c t r o n i c  e f f i c i e n c y "  
of 17.2%. T h i s  is much lower than  for S/N 101, and 
may be due t o  undetec ted  loss or poor match i n  t h e  

o u t p u t  s e c t i o n .  

- D e s p i t e  t h e  lower e f f i c i e n c y ,  t h e  t r a n s f e r  curve  is 
s t i l l  l i n e a r  a t  t h e  l e v e l  of 200 W power output .  

3.3.2.5 CW T e s t  Data 

The d u t y  f a c t o r  was inc reased  s lowly  t o  minimize t h e  

p o s s i b i l i t y  o f  damage t o  t h e  t u b e  by high average  power. 
was employed f o r  a l l  du ty  f a c t o r s  above 10%. 

q u i t e  adequa te ly  under  CW o p e r a t i n g  c o n d i t i o n s ,  i n d i c a t i n g  an e x c e l l e n t  
average-power handl ing  c a p a c i t y  for t h e  c i r c u i t  and body. Unfo r tuna te ly ,  
t h e  rf d r i v e r  s o u r c e  t h a t  had been used f o r  t h e  low-duty t e s t i n g  had been 
damaged i n  t h e  i n t e r i m  and was t h u s  n o t  a v a i l a b l e  f o r  CW t e s t i n g  up to  
s a t u r a t i o n .  

The water  coo l ing  
However, t h e  t u b e  perfomed 

I n  lieu of s imply  d r i v i n g  t h e  t u b e  t o  s a t u r a t i o n ,  t h e  r e q u i r e d  
power was fed back from t h e  o u t p u t  i n t o  t h e  output-sever  p o r t ,  p l a c i n g  t h e  

ou tpu t  s e c t i o n  i n  a loop.  But s i n c e  t h e  t u b e  could  t h e n  a u t o m a t i c a l l y  d r i v e  
i t s e l f  t o  s a t u r a t i o n ,  t h e  cathode v o l t a g e  was lowered - t o  avoid t h e  r i s k  

of unnecessary c i r c u i t  damage from t o o  great  a combinat ion of rf and beam- 
i n t e r c e p t i o n  hea t ing .  
these c i rcumstances .  
ana lyze r  . > 

The performance t a b u l a t e d  below was ob ta ined  under  
(RF f r e q u e n c i e s  here were measured wi th  a spectrum 

Cathode Vol t age  -8.2 kV 

Cathode Cur ren t  159 mA 
Body Cur ren t  18 mA 
RF Output  Power 51.8 dEm (151 W> 
RF Frequencyl 28.55 GHz 
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Assuming a c i r c u i t  e f f i c i e n c y  of 80% and 10% r e d u c t i o n  i n  t h e  e l e c t r o n  

energy o f  t h e  body c u r r e n t ,  t h e  t o t a l  power d i s s i p a t e d  i n  t h e  body would be 

171 watts. There  were no gas p r e s s u r e ,  defocus ing ,  or o u t p u t  power changes 

to  i n d i c a t e  t h a t  the c i r c u i t  or body was i n  any way adve r se ly  affected by 
t h i s  l e v e l  of power d i s s i p a t i o n .  
con t inuous ly  for over  one hour. 

The t u b e  operated . i n  t h i s  f a s h i o n  
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4. CONCLUSIONS AND RECOMMENDATIONS 

4.1 CONCLUSIONS 
* 

Two TunneLadder mill imeter-wave (29 GHz) t ravel ing-wave t u b e s  rer ! 

f a b r i c a t e d  and tested, Performance of both t u b e s  was e s s e n t i a l l y  a s  
predicted - and exceeding p r e d i c t i o n s  a s  regards "hotff bandwidth. 

The technology l i s t e d  below was developed for t h e  f a b r i c a t i o n  of these 
tubes :  

- Chemical m i l l i n g  of t h e  formed ladder e l emen t s  
- Brazing  of t h e  diamond cubes  t o  t h e  Amzirc r i d g e  

- Meta l i z ing  t h e  uppermost f a c e  of t h e  diamond cubes  
- Brazing  of t h e  formed l a d d e r  e l emen t s  t o  t h e  upper s u r f a c e s  of  t h e  

diamond cubes  and t h e  waveguide-half block 

- Machining and b r a z i n g  t h e  two waveguide-half blocks. 

I n  a d d i t i o n ,  TunneLadder des ign  f e a t u r e s  i n c o r p o r a t e d  t h e  p r i n c i p l e s  
of:  

- 9fForward/fundamenta11f i n t e r a c t i o n  for h igh  i n t e r a c t i o n  impedance, 
g a i n  per  u n i t  l e n g t h  and e f f i c i e n c y  

- An i n t e n t i o n a l l y  d i s p e r s i v e  slow-wave c i r c u i t  t o  f u r t h e r  augment 

i n t e r a c t i o n  impedance when a small nhotn bandwidth w i l l  s a t i s f y  
t h e  a p p l i c a t i o n s  need 

- The nonaxisymmetric beam t u n n e l  such  t h a t  h igh  rf a x i a l  f i e l d s  a r e  
brought  close t o  t h e  beam t o  enhance i n t e r a c t i o n  whi le  t h e  

evacua t ion  ( v i a  diamond s u p p o r t s )  of beam-intercept ion h e a t i n g  i s  
maximized a t  t h a t  place 

- ... and such t h a t  t h e  p o r t i o n  of t h e  i n t e r a c t i o n  s t r u c t u r e  
s u b j e c t  t o  t h e  g r e a t e s t  rf h e a t i n g  is elsewhere, wi th  a s e p a r a t e  

evacua t ion  pa th  for t h i s  h e a t  -- thereby comple t ing  s e p a r a t i o n  of 
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the two kinds of heat input and removal for the interaction 
circuit 

The success of the two 29 GHz TunneLadder TWTs, which brought these 
principles together for the first time, has given them validity. 
is known, these tubes are also the first ever to successfully incorporate 
"photo-etching" or "chemical milling" of the periodic structure - which 
process, in this case, is also implemented in three dimensions. 

As far as 

4.2 RECOMMENDATIONS 

A recommendation to continue the program is unnecessary, as the 
follow-on program is in progress. 

The following changes are recommended to simplify the assembly 

procedure and to decrease the cost of the tube: 

- The waveguide-transition design was part of the waveguide-shroud 
heliarc assembly. Making this a separate braze would reduce the 
complexity of the waveguide-coolant shroud heliarc assembly braze 
to the brazed input and output section. 
changes in match due to possible misalignment during the 
complicated braze to the circuit sections (electrical as well as 

coolant line brazes). 

It would eliminate the 

- Eliminate the sever external waveguide assemblies (2) and provide 
a sever termination at each end of tube sections. This will 
greatly reduce the cost and complexity of the sections. It 
eliminates two window assemblies and simplifies the section 
assembly and braze cycle. 

It is recommended that a PPM version be developed. The size, weight 
and cost improvements make the "forward/fundamental" TunneLadder 
millimeter-wave TWT a very attractive device for applications other than in 
ground terminals. 
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